Post by Waldek Hebisch...
Inspired by noweb FAQ in am testing the following patch 
tohether with previous patch it allowed me to run 'make dvi'
with only two problems (Rosetta.pamphlet and morerules.mk).
'morerules.mk' is build only during main build, so for
standalone 'make dvi' (without previous build) I had to add
it by hand. Now I am tesing full build.
Here is a patch to Rosetta.pamphlet to make it a real pamphlet
(noweb) file:
[***@axiomdeveloper doc]$ diff au Rosetta.pamphlet_orig Rosetta.pamphlet
 Rosetta.pamphlet_orig 20060911 22:16:29.000000000 0500
+++ Rosetta.pamphlet 20061022 21:05:28.000000000 0500
@@ 1,4 +1,4 @@
\documentclass{book}
+\documentclass{article}
\normalsize\baselineskip=12pt
\parskip=0pt
\parindent=10pt
@@ 15,8 +15,6 @@
\renewcommand{\textfraction}{.1}
\renewcommand{\floatpagefraction}{.75}
%
\def\chaptername{}
%
\catcode`@=11
\def\***@plain{\let\@mkboth\@gobbletwo%
\let\@oddhead\@empty\def\@oddfoot{\sysdetails}
@@ 59,8 +57,6 @@
\newcommand{\Sumit}{{\sf Sumit}}
\newcommand{\Yacas}{{\sf Yacas}}
\chapter{Rosetta Translations}

\section{Introduction}
The following is a collection of synonyms for various operations in
@@ 268,19 +264,19 @@
\begin{tabular}{llll}
& \h{Set} & \h{List} & \h{Matrix} \\
\hline
\Axiom & set [1, 2] & [1, 2] & matrix([[1, 2],[3, 4]])
\\
\Derive & \{1, 2\} & [1, 2] & [[1,2], [3,4]]
\\
+\Axiom & set [1, 2] & [1, 2] & matrix(@[[1, 2],[3, 4]])
\\
+\Derive & \{1, 2\} & [1, 2] & @[[1,2], [3,4]]
\\
\DoCon & & & \\
\GAP & Set([1,2]) & [1, 2] & [[1,2], [3,4]]\fnm
\\
+\GAP & Set([1,2]) & [1, 2] & @[[1,2], [3,4]]\fnm
\\
\Gmp & & & \\
\Macsyma & [1, 2] & [1, 2] & matrix([1, 2], [3, 4])
\\
\Magnus & & & \\
\Maxima & [1, 2] & [1, 2] & matrix([1, 2], [3, 4])
\\
\Maple & \{1, 2\} & [1, 2] & matrix([[1, 2], [3, 4]])
\\
+\Maple & \{1, 2\} & [1, 2] & matrix(@[[1, 2], [3, 4]])
\\
\Mathematica & \{1, 2\} & \{1, 2\} & \{\{1, 2\}, \{3, 4\}\}
\\
\MuPAD & \{1, 2\} & [1, 2] & export(Dom): \q export(linalg):
\\
& & & matrix:= ExpressionField(normal)):
\\
 & & & matrix([[1, 2], [3, 4]])
\\
+ & & & matrix(@[[1, 2], [3, 4]])
\\
\Octave & & & \\
\Pari & & & \\
\Reduce & \{1, 2\} & \{1, 2\} & mat((1, 2), (3, 4))
\\
@@ 301,7 +297,7 @@
\Magnus & & & & \\
\Maxima & x = 0 & l[2] & m[2, 3] & length(l) \\
\Maple & x = 0 & l[2] & m[2, 3] & nops(l) \\
\Mathematica & x == 0 & l[[2]] & m[[2, 3]] & Length[l] \\
+\Mathematica & x == 0 & l@[[2]] & m@[[2, 3]] & Length[l] \\
\MuPAD & x = 0 & l[2] & m[2, 3] & nops(l) \\
\Octave & & & & \\
\Pari & & & & \\
@@ 345,7 +341,7 @@
\Magnus & & \\
\Maxima & mat\_\,ncols(m) & transpose(matrix(l))
\\
\Maple & linalg[coldim](m) & linalg[transpose](matrix([l]))
\\
\Mathematica & Dimensions[m][[2]] & Transpose[\{l\}]
\\
+\Mathematica & Dimensions[m]@[[2]] & Transpose[\{l\}]
\\
\MuPAD & linalg::ncols(m) & transpose(matrix([l]))\,\fnm
\\
\Octave & & \\
\Pari & & \\
@@ 463,8 +459,8 @@
\Magnus & \\
\Maxima & for x in [2, 3, 5] while x\^{}2 < 10 do print(x)\$
\\
\Maple & for x in [2, 3, 5] while x\^{}2 < 10 do print(x) od:
\\
\Mathematica & For[l = \{2, 3, 5\}, l != \{\} \&\& l[[1]]\^{}2 < 10,
\\
 & \q l = Rest[l], Print[l[[1]]] ]
\\
+\Mathematica & For[l = \{2, 3, 5\}, l != \{\} \&\& l@[[1]]\^{}2 < 10,
\\
+ & \q l = Rest[l], Print[l@[[1]]] ]
\\
\MuPAD & for x in [2, 3, 5] do if x\^{}2 < 10 then print(x) end\_if
\\
& \q end\_for:
\\
\Octave & \\
@@ 683,7 +679,7 @@
\Magnus & & & \\
\Maxima & part(e, 0) & part(e, 1) & args(e) \\
\Maple & op(0, e) & op(1, e) & [op(e)] \\
\Mathematica & Head[e] & e[[1]] & ReplacePart[e, List, 0] \\
+\Mathematica & Head[e] & e@[[1]] & ReplacePart[e, List, 0] \\
\MuPAD & op(e, 0) & op(e, 1) & [op(e)] \\
\Octave & & & \\
\Pari & & & \\
@@ 789,7 +785,7 @@
\Maple & writedata("file", xy);
\\
\Mathematica & outfile = OpenWrite["file"];
\\
& Do[WriteString[outfile,
\\
 & \q xy[[i, 1]], " ", xy[[i, 2]], "$\backslash$n"], \{i, 1,
n\}] \\
+ & \q xy@[[i, 1]], " ", xy@[[i, 2]], "$\backslash$n"], \{i, 1,
n\}] \\
& Close[outfile];
\\
\MuPAD & fprint(Unquoted, Text, "file",
\\
& \q ("$\backslash$n", xy[i, 1], xy[i, 2]) \$ i = 1..n):
\\
@@ 1513,4 +1509,3 @@
\end{tt}
\endgroup
\end{document}


Regards,
Bill Page.